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Abstract. We study the diffractive production of qq̄g jets with large transverse momenta in the region of
large diffractive masses (small β). Cross sections for transverse and longitudinal photons are obtained in
the leading log 1/xIP and log 1/β approximation, keeping all powers in log k2

t /Q2. We perform a numerical
study and illustrate the angular distribution of the three jets. We also estimate the integrated diffractive
three jet cross section and compare with the dijet cross section obtained before.

1 Introduction

The diffractive dissociation in deep inelastic scattering lies
on the interface between perturbative and non-perturba-
tive QCD, and one expects the diffractive cross section
to contain both hard and soft contributions. As a first
experimental hint in this direction, one might take the
observation that the energy dependence of the diffractive
cross section, i.e. the measured intercept of the Pomeron
flux factor tends to be larger than that of the pure soft
Pomeron [1,2]. As a possible interpretation of this obser-
vation, the contribution of the “perturbative Pomeron“,
the gluon structure function, may turn out to be substan-
tial: the observed rise of the gluon structure function at
small-x enhances the hard part of the diffractive final state
and thus leads to an effective Pomeron intercept which is
bigger than that of the soft Pomeron.

In a first attempt to provide a description of the
diffractive cross section which takes into account both
hard and soft contributions a parameterization has been
suggested [3] and successfully fitted to both ZEUS and
H1 [3,4] data. As a main result, it was shown that an ac-
ceptable description of the data requires (at least) three
pieces: the diffractive production of transverse qq̄ and qq̄g
states and the diffractive production of longitudinal vector
mesons. The fits also confirmed that the effective intercept
of the Pomeron tends to be larger than the soft Pomeron.

In order to obtain further insight into DIS diffraction
and, in particular, to understand the origin of the higher
Pomeron intercept, one has to open the diffractive final
state and to isolate those parts which can be attributed
to the hard Pomeron. Apart from the longitudinal vector
particles which have been suggested already several years
ago [5], diffractive final states consisting of hard jets only,
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are the most promising candidates. As a first step, the pro-
duction of quark-antiquark jets (Fig. 1) with large trans-
verse momenta has been discussed by several groups [6–8].
To summarize the main result, the energy dependence is
given by the square of the gluon structure function:

dσ ∼ [
1
k2

T

xIP g(xIP , k2
T /(1 − β))]2 (1.1)

where kT denotes the transverse momentum of the quarks
in the photon-Pomeron rest frame, and β = Q2/(Q2+M2)
is related to the mass M of the diffractive system. From
(1.1) one concludes that for small masses (β near 1) the
cross section will be dominated by this “hard Pomeron“,
either in the production of vector particles or of hard qq̄-
jets. For larger diffractive masses the contribution of hard
qq̄ jets is smaller but not negligible. Another interesting
feature is the azimuthal dependence of the qq̄ cross section.
It was found [9] that, in the photon-Pomeron rest frame,
the two jets prefer to lie perpendicular to the scattering
plane (defined by the photon-Pomeron direction and the
outgoing electron momentum). This has to be compared
with the photon-gluon fusion mechanism in the usual DIS
final state, where the two outgoing quarks prefer to lie in-
side the scattering plane. The experimental verification of
these theoretical predictions turns out to be rather diffi-
cult: to make the calculation applicable, the jet final state
is not allowed to contain any soft Pomeron remnants; the
presence of such pieces changes the situation rather radi-
cally. To exclude such a soft remnant requires high statis-
tics of the data and a rather good resolution in the jet
algorithm. First results have been reported in [10].

For not so small diffractive masses (β away from 1)
one expects the production of extra gluons to become es-
sential. The simplest final state consists of the qq̄ pair and
one gluon; in the region of large diffractive masses (small
β) one expects a separation in rapidity between the qq̄ sys-
tem and the gluon (Fig. 2) (not to be confused with the
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Fig. 1. Dijet Production. The exchanged gluons couple to the
quarks in all possible ways

γ∗

∑

Fig. 2. Three jet Production. The exchanged gluons couple to
the quarks in all possible ways

rapidity gap between the diffractive qq̄g system and the
outgoing proton). In order to isolate the “hard Pomeron“
contributions one, again, wants to study final states which
consist only of jets with large transverse momenta (and no
further soft remnants). In this paper we present the calcu-
lation of this three-jet cross section, restricting ourselves
to the region of large diffractive masses (small β). We
shall work in the leading-log(1/β), log(1/xIP ) approxima-
tion, retaining all powers in k2

T /Q2. This approximation
includes also higher-twist terms of the diffractive cross sec-
tion. Diffractive production of qq̄g final states in another
kinematic region has been studied before [11,12]: the gluon
transverse momentum has to be smaller than those of the
quarks. The results of [12] extend into the large β-region.

There are several questions to which our jet analysis
gives an answer. Apart from a quantitative estimate of the
jet rates (as a function of the imposed kinematical cuts)
our analytic formula allows a first step towards an analysis
of the event shape of diffractive final states (e.g. thrust).
In particular, we find that in the region of medium small
β (where our formula is applicable) the qq̄g final state
provides a substantial contribution to the two-jet cross
section. Our framework also allows to address the transi-
tion from hard jets to the aligned gluon configuration: in a
future step one might model a two gluon amplitude which
allows to extrapolate our formula into the soft Pomeron
region. Such a model (an explicit parameterization was
suggested in [13]) would allow to describe both the hard
and the soft region of diffractive qq̄g production. However,

k1

k2

q r + q − k1 − k2

p p’=p-r

Fig. 3. Notations for the diffractive production of a qq̄g sys-
tem.

a severe limitation is our restriction to the small-β region.
In order to cover the full β range we need a complete LO
calculation of three parton final states in DIS diffraction
which includes a NLO two jet calculation.

This paper will be organized as follows. In Sect. 2 we
describe our calculation and present the result for the
three jet production cross section. Section 3 contains the
transformation into the impact parameter space and in
Sect. 4 we discuss a few particular kinematic regions for
which our formula allows analytic approximations. In
Sect. 5 we perform a first numerical analysis, calculate in-
tegrated cross sections and show a few plots. In the final
section we summarize our results and make a few conclud-
ing remarks.

2 The differential jet production cross section

Our notations are illustrated in Fig. 3. As usual, q and p
denote the four momenta of the photon and the proton,
respectively, t = r2 is the square of the momentum trans-
ferred from the proton to the diffractive system. The total
energy is denoted by s and the sub-energy of the γ∗-proton
system with W 2. The scaling variables are x = Q2/2pq,
xIP = (Q2 + M2)/(Q2 + W 2) , and β = Q2/(Q2 + M2).
For simplicity we restrict ourselves to the forward direc-
tion, t = 0, such that the four momentum r = xIP p has no
transverse component. We use the Sudakov parameteriza-
tion

ki = αiq
′ + βip + ki T , k2

i = −k2
i T , (2.1)

where q′ = q + xp. We work in a reference frame where
photon and proton momenta are collinear (along the z-
direction); the scattering plane (the x−z plane) is defined
by the incoming and outgoing electron. Azimuthal angles
refer to this scattering plane. In order to justify the use
of perturbation theory we start in the “hard region“: all
three final state partons have large transverse momenta.
Later on we will show that the more precise conditions
imply that the virtualities of the exchanged quark and
gluon have to be large. This leads to:

Q2
0 < k2

2

Q2
0 <

1
α1

[α1(1 − α1)Q2 + k2
1]

Q2
0 <

1
1 − α1

[α1(1 − α1)Q2 + (k1 + k2)2] (2.2)
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Our calculation will be done in the leading-log W 2, leading
- log M2 approximation and applies to the region Q2 �
M2 � W 2. As usual, in this approximation we have α2 �
α1, 1−α1 and β2 close to xIP . For large values of log Q2/k2

i
our approximation reduces to the double logarithmic ap-
proximation (DLA). The invariant mass M of the diffrac-
tive system can be expressed (in this leading log approxi-
mation) as

M2 = W 2(xIP − x) . (2.3)

The mass of the qq̄ subsystem is given by m2
qq̄ = m2 − k2

2
with

m2 = M2 − β2W
2, β2 =

M2 − m2

W 2 . (2.4)

For Q2 � M2 (i.e. small β) we expect the invariant mass
of the qq̄ pair to be much smaller than M2 (of the order
of Q2). From the mass shell condition of the upper quark
line (with momentum r+q−k1−k2) we have the relation:

0 = α1(1 − α1 − α2)(M2 − β2W
2)

−(1 − α1 − α2)k2
1 − α1(k1 + k2)2

≈ α1(1 − α1)m2 − (1 − α1)k2
1 − α1(k1 + k2)2 (2.5)

We begin with the calculation of the γ∗p cross section. The
diagrams we have to calculate are shown in Fig. 4. Since
we consider the square of the scattering matrix element
and, moreover, take the discontinuity in W 2, all quark
lines between the leftmost and the rightmost gluon are
on-shell; the same holds for the produced gluon below the
quark loop. This leads to δ-functions which will be used
to integrate over all αi and βi, except for β2. We begin
with the transverse cross section. Let ex = (0, 1, 0, 0) =
(0, ex, 0) and ey = (0, 0, 1, 0) = (0, ey, 0) be the transverse
polarization vectors of the photon (it should be noted that
ex lies in the scattering plane). Contracting the Lorentz
indices of the two external photons with the transverse
polarization vectors e1 and e2 (each of them can be either
ex or ey), the sum of the diagrams in Fig. 4 leads to a
contribution of the form

2W 4δ
(
(r + q − k1 − k2)2

)
× [

4α2
1(1 − α1)2e1ie2jMilM

′
jl

−α1(1 − α1)e1 · e2MilM
′
il] (2.6)

(here i, j, l = 1, 2 refer to the transverse components; re-
peated indices are summed over, and the prime at the sec-
ond M ′

il factor indicates that it belongs to the two-gluon
amplitude with momentum l′, attached to the lower two
gluons on the rhs of the diagrams in Fig. 4). We have ex-
hibited the δ function of the upper quark line which leads
to the condition (2.4) and will be used to express α1 in
terms of M , β2, k1, and k2. The expression for Mij will be
discussed below. Contracting this with the lepton tensor
y2

4Q2 Lµνeµ
1eν

2 and summing over the two possible transverse
polarizations we obtain

2W 4δ
(
(r + q − k1 − k2)2

)
×

[
1 + (1 − y)2

2
4α1(1 − α1)[α2

1 + (1 − α1)2]

×MilM
′
il − 4(1 − y)α2

1(1 − α1)2

×(M1lM
′
1l − M2lM

′
2l)

]
(2.7)

One recognizes two terms. The first one (proportional to
MilM

′
il) corresponds to the sum over the two transverse

polarizations, the second one (proportional to M1lM
′
1l −

M2lM
′
2l, M1l = exiMil, M2l = eyiMil) to the difference.

As long as we do not integrate over the azimuthal angle
of the outgoing electron, the two transverse polarizations
of the photon come with different weights, and that is
why we write our result in terms of both the sum and the
difference of the two polarizations.

For the longitudinal cross section we arrive at the fol-
lowing structure:

2W 4δ
(
(r + q − k1 − k2)2

)
α3

1(1 − α1)3Q2MlM
′
l . (2.8)

Together with the lepton tensor we obtain

2W 4δ
(
(r + q − k1 − k2)2

)
×2(1 − y)α3

1(1 − α1)3Q2MlM
′
l . (2.9)

Finally, we have the interference between the trans-
verse and the longitudinal photon. The expressions anal-
ogous to (2.5) and (2.6) are given by

2W 4δ
(
(r + q − k1 − k2)2

)
×2

√
Q2α2

1(1 − α1)2(1 − 2α1)M1lM
′
l . (2.10)

and

2W 4δ
(
(r + q − k1 − k2)2

)
×

√
1 − y(2 − y)

√
Q2α2

1(1 − α1)2

×(1 − 2α1)M1lM
′
l . (2.11)

Before we turn to the calculation of the Mil and Ml, we
write down the final formula for the process e + p → e′ +
qq̄g + p. The diffractive final state is characterized by the
invariant mass M , the longitudinal momentum fraction β2
of the outgoing gluon, and by the transverse momenta k1,
k2 of the outgoing quark and gluon, respectively (in our
notation, k2 = −k2

T > 0). Starting from (2.5)–(2.10) and
evaluating the final state phase space integrals we obtain:

dσe−p
D

dydQ2dM2dm2d2k1d2k2dt |t=0

=
αem

yQ2π

[
1 + (1 − y)2

2
dσγ∗p

D,T,+

dM2dm2d2k1d2k2dt |t=0

−2(1 − y)
dσγ∗p

D,T,−
dM2dm2d2k1d2k2dt |t=0
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l′ l′ + r
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k2
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l

Fig. 4. Diagrams for the cross section of diffractive qq̄g produc-
tion. We only show the diffractive system: at the lower end the
two-gluon systems on both sides couple to the gluon structure
function of the proton. At the upper end, the gluons couple
to the quark loop in all possible ways. We do not show the
vertical discontinuity line which divides each diagram into left
and right hand pieces.

+(1 − y)
dσγ∗p

D,L

dM2dm2dk1d2k2dt |t=0

+(2 − y)
√

1 − y
dσγ∗p

D,I

dM2dm2d2k1d2k2dt |t=0

]
, (2.12)

where the γ∗p cross sections are defined as:

dσγ∗p
D,T+

dM2dm2d2k1d2k2dt |t=0
=

9
128π

1√
S(M2 − m2)m2

×
∑

f

e2
fαemα3

s

[
α2

1 + (1 − α1)2
]

×α1(1 − α1)MilM
′
il (2.13)

dσγ∗p
D,T−

dM2dm2d2k1d2k2dt |t=0
=

9
128π

1√
S(M2 − m2)m2

×
∑

f

e2
fαemα3

sα
2
1(1 − α1)2

× (M1lM
′
1l − M2lM

′
2l) (2.14)

dσγ∗p
D,L

dM2dm2d2k1d2k2dt |t=0
=

9
128π

1√
S(M2 − m2)m2

×
∑

f

e2
fαemα3

s4α3
1(1 − α1)3Q2MlM

′
l (2.15)

dσγ∗p
D,I

dM2dm2d2k1d2k2dt |t=0
=

9
128π

1√
S(M2 − m2)m2

×
∑

f

e2
fαemα3

sα
2
1(1 − α1)2(1 − 2α1)

×1
2

√
Q2 [M1lM

′
l + MlM

′
1l] . (2.16)

Here

S =
(

1 +
k2

1

m2 − (k1 + k2)2

m2

)2

− 4
k2

1

m2 , (2.17)

and the prefactors containing α1 have to be re-expressed
using the δ-function condition (2.4). As we have discussed
before, the transverse cross section has two terms. The
first one corresponds to the sum over the two transverse
polarizations, the second one to the difference. This second
term of the transverse cross section, as well as the inter-
ference cross section, introduce the azimuthal dependence
of our cross section.

It is instructive to consider the kinematics of the three
partons in the final state. Within our approximation, we
have to restrict ourselves to the forward direction of the
Pomeron: in the γ∗-IP CM system the gluon is emitted in
the direction of the Pomeron. The kinematic boundaries of
the transverse momenta k1 and k2 are determined by the
condition S > 0 (2.17). The allowed region is illustrated
in Fig. 5, where we have plotted the two quark trans-
verse momenta, normalized to the invariant mass square
m2 of the qq̄ subsystem: k2

1/m2 and (k1 + k2)2/m2. The
curve S = 0 shows that the quark momenta are essentially
restricted by m2. For the particular case of small gluon
transverse momenta k2

2 � k2
1, we are on the diagonal line

k2
1 ≈ (k1 + k2)2, and the physical region is restricted to

k2
1 ≤ 1

4m2. For a given set of transverse momenta, the
longitudinal momentum fraction α1 is given by one of the
two values:

α1 =
1
2

(
1 +

k2
1 − (k1 + k2)2

m2 ±
√

S

)
, (2.18)
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1

1 k2
1/m2

(k1 + k2)2/m2

S > 0

Fig. 5. Kinematic Boundaries. The drawn line
belongs to S = 0.

(α2, β1, and β2 follow from the mass shell conditions k2
1 =

0, k2
2 = 0). The limiting values α1 = 0 and 1 − α1 = 0 lie

on the axis k2
1 = 0 and (k1 + k2)2 = 0, respectively, i.e.

they correspond to final states where one of the quark lines
becomes soft. For small k2

2 (i.e. on the line k2
1 = (k1+k2)2)

(2.17) simplifies to

α1 =
1
2
(1 ±

√
1 − 4

k2
1

m2 ) (2.19)

and

α1(1 − α1) = k2
1/m2. (2.20)

For the angle ∆ between the two quarks we find

1 − cos ∆

2
=

(k1 + α1k2)2/M2

[α2
1 + k2

1/M
2][(1 − α1)2 + (k1 + k2)2/M2]

(2.21)
In the denominator, the α1 terms will dominate, as long
as we stay away from the values α1 = 0, 1, the numerator
is (at most) of the order m2/M2 and the opening angle
∆ = O(m2/M2). Therefore, for small m2/M2 the open-
ing angle will be small (of the order ∆ = O(m2/M2)),
and we expect, in the γ∗IP CM-system, the gluon and
the qq̄-pair to come out as two back-to-back jets. The qq̄-
pair produces a broader jet, where the opening angle is
given by (2.21) and will approximately be of the order of
O(m2/M2). When m2 gets larger, the qq̄-pair jet becomes
broader and eventually can be resolved into two separate
jets. The angle of the axis of the two-jet configuration is
given by the direction of the outgoing gluon. If θ2 denotes
the angle between the gluon and the proton momentum,
we find:

1 − cos θ2

2
=

k2
2/M

2

k2
2/M

2 + (1 − m2/M2)2
. (2.22)

For m2 � M2 the gluon transverse momentum k2
2 will be

much smaller than M2, the angle will be small, i.e. the
outgoing gluon moves in the direction of the proton with
an angle of the order O(k2

2/M
2). In the strong ordering

region k2
2 � k2

1, (2.21) can be approximated by

1 − cos ∆

2
= (2.23)

m2

M2

1
[α1 + (1 − α1)m2/M2][(1 − α1) + α1m2/M2]

In Sect. 5 we present results of a numerical study of
our cross section formula which illustrate the geometry of
the three-jet configuration.

Let us now turn to the calculation of the Mil and Ml.
Each of them is of the form

Mil =
∫

d2l
πl2

F(xIP , l2)Til, (2.24)

(and an analogous expression for Ml), where F denotes
the unintegrated gluon structure function

∫ Q2

Q2
0

dl2F(x, l2) = xg(x, Q2) (2.25)

and models the perturbative Pomeron. In the fermion loop
at the top of the diagrams in Fig. 4 it is understood that
the gluons couple to the quarks in all possible ways. Since
we consider the square of the scattering matrix element
and take the discontinuity in W 2, all quark lines between
the leftmost and the rightmost gluon are on-shell; this
leads to δ-functions which will be used to integrate over
all αi and βi, except for β2. We begin with the transverse
cross section. The diagrams with two gluons lines attached
to the fermion loop (Fig. 4a) lead to:
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T
(a)
il = 2

(
k1 + k2

D(k1 + k2)
− k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

, (2.26)

with

D(k) = α1(1 − α1)Q2 + k2. (2.27)

In (2.26) the first factor (with subscript ‘i‘) comes from
the fermion loop, the second factor from gluon production
below the fermion loop. For the latter we have made use
of the K2→4 gluon vertex [16,17]:(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

(
k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

(2.28)

(this includes the two vertical gluon propagators with mo-
menta k2). A similar expression holds for M ′

jl.
Next we turn to the four diagrams in Fig. 4b where

four gluons are attached to the fermion loop. We write:

(MilM
′
jl)

(b1) =
∫

d2l
πl2

F(xIP , l2)

×
∫

d2l′

πl′2
F(xIP , l′2)(TilT

′
jl)

(b1)(2.29)

The first diagram in Fig. 4b leads to:

(TilT
′
jl)

(b1) =
(

l + k1 + k2

D(l + k1 + k2)
+

l − k1

D(l − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

×
(

l′ + k1 + k2

D(l′ + k1 + k2)
+

l′ − k1

D(l′ − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

(2.30)

Similarly, we find for the other three contributions:

(TilT
′
jl)

(b2) = −
(

l − k1 − k2

D(l − k1 − k2)
+

l + k1

D(l + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 − l
(k2 − l)2

− k2

k2
2

)
l

×
(

l′ + k1 + k2

D(l′ + k1 + k2)
+

l′ − k1

D(l′ − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

, (2.31)

(TilT
′
jl)

(b3) = −
(

l + k1 + k2

D(l + k1 + k2)
+

l − k1

D(l − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

×
(

l′ − k1 − k2

D(l′ − k1 − k2)
+

l′ + k1

D(l + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 − l′

(k2 − l′)2
− k2

k2
2

)
l

, (2.32)

and

(TilT
′
jl)

(b4) =
(

l − k1 − k2

D(l − k1 − k2)
+

l + k1

D(l + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 − l
(k2 − l)2

− k2

k2
2

)
l

×
(

l′ − k1 − k2

D(l′ − k1 − k2)
+

l′ + k1

D(l′ + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 − l′

(k2 − l′)2
− k2

k2
2

)
l

(2.33)

The third group in Fig. 4c consists of diagrams with
three gluons being attached to the quark loop. We obtain:

(TilT
′
jl)

(c1) = 2
(

k1 + k2

D(k1 + k2)
− k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

×
(

l′ + k1 + k2

D(l′ + k1 + k2)
+

l′ − k1

D(l′ − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

(2.34)

(TilT
′
jl)

(c2) = −2
(

k1 + k2

D(k1 + k2)
− k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

×
(

l′ − k1 − k2

D(l′ − k1 − k2)
+

l′ + k1

D(l′ + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
j

×
(

k2 − l′

(k2 − l′)2
− k2

k2
2

)
l

(2.35)



J. Bartels et al.: Quark-antiquark-gluon jets in dis diffractive dissociation 117

(TilT
′
jl)

(c3) = 2
(

l + k1 + k2

D(l + k1 + k2)
+

l − k1

D(l − k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 + l
(k2 + l)2

− k2

k2
2

)
l

×
(

k1 + k2

D(k1 + k2)
− k1

D(k1)

)
j

×
(

k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

(2.36)

(TilT
′
jl)

(c4) = −2
(

l − k1 − k2

D(l − k1 − k2)
+

l + k1

D(l + k1)

− k1 + k2

D(k1 + k2)
+

k1

D(k1)

)
i

×
(

k2 − l
(k2 − l)2

− k2

k2
2

)
l

×
(

k1 + k2

D(k1 + k2)
− k1

D(k1)

)
j

×
(

k2 + l′

(k2 + l′)2
− k2

k2
2

)
l

(2.37)

Combining all contributions (a)–(c) we arrive at our
final result. The sum of the products TilT

′
jl can be written

as the square of two identical (up to the primed l-integral)
expressions:

Til =
(

l + k1 + k2

D(l + k1 + k2)
+

k1 + k2

D(k1 + k2)

− k1 − l
D(k1 − l)

− k1

D(k1)

)
i

×
(

l + k2

(l + k2)2
− k2

k2
2

)
l

+ (l → −l) . (2.38)

In order to obtain Ml, we simply drop the numerators in
the first factor (with subscript ‘i‘) in (2.38):

Tl =
(

1
D(l + k1 + k2)

+
1

D(k1 + k2)

− 1
D(k1 − l)

− 1
D(k1)

)

×
(

l + k2

(l + k2)2
− k2

k2
2

)
l

+ (l → −l) (2.39)

which defines Tl, and Ml then follows from (2.24). Insert-
ing these results into (2.12)–(2.15), we arrive at our final
expression for the ep cross section.

3 Impact parameter representation

It is very instructive to analyze the structure of the matrix
element Mil or Ml in impact parameter space. As will be

shown below the simplification in impact parameter space
arises in form of two wave functions of which the first
describes the dissociation of the photon into the qq̄-pair
and the second the subsequent radiation of the gluon from
the quark or the antiquark. The couplings of the t-channel
gluons generate phase-factors which after some regrouping
can be turned into effective dipole cross sections. For the
numerical analysis later on we have, of course, to use the
momentum representation.

We start by taking the Fourier transformation of Til:

T̃il =
∫

d2k1 d2k2eik1·r1+ik2·r2 Til (3.1)

= ΨT
i (r1)

∫
d2k2 eik2·r2

×
[{

e−i(k2+l)·r1 + e−ik2·r1 − e−il·r1 − 1
}

×
{

k2 + l
(k2 + l)2

− k2

k2
2

}
l

+ (l → −l)
]

= ΨT
i (r1) [ϕl(r2 − r1)

×
{

e−il·r2 + e−il·(r2−r1) − e−il·r1 − 1
}

+(l → −l) − ϕl(r2)

×
{

e−il·r2 + e−il·(r2−r1) − eil·r1 − 1
}

+ (l → −l)
]

where ΨT and ϕ are defined as

ΨT
i (r) =

∫
d2k eik·r ki

D(k)

= −2πi
ri

|r|
√

α(1 − α)Q2 K1(
√

α(1 − α)Q2r2)

ϕl(r) =
∫

d2k eik·r kl

k2 = −2πi
rl

|r|2 . (3.2)

If we now introduce the effective dipole cross-section as

σ(r) =
∫

d2l

πl2
F(xIP , l2)

(
1 − eil·r) (

1 − e−il·r) (3.3)

we finally obtain for M̃il, the Fourier transform of Mil:

M̃il = ΨT
i (r1) {ϕl(r2) − ϕl(r2 − r1)}l

× [σ(r2) + σ(r2 − r1) − σ(r1)] . (3.4)

The vector r1 denotes the separation of the quark and
antiquark, r2 the separation of the quark and gluon and
r2 − r1 the separation of the antiquark and gluon. The
result in (3.4) is similar to but not identical with the result
in [18]. One derives the corresponding expression for M̃l

by substituting the transverse wave function ΨT by the
longitudinal wave function ΨL,

ΨL(r) =
∫

d2k eik·r 1
D(k)

= 2π K0

(√
α(1 − α)Q2r2

)
. (3.5)

The impact parameter representation suggests the intu-
itive interpretation that following the initial dissociation
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of the photon, which is described by ΨT,L, each of the
quarks radiates off a gluon represented by ϕ. After the
creation of the qq̄g-state the interaction with the target
processes pairwise, i.e. each of the pairs qq̄, qg and q̄g
gives a separate contribution as indicated by the differ-
ent arguments of the effective dipole cross-section σ. As
was pointed out in [18], however, the color structure is
not quite consistent with the previous interpretation. In
particular the interaction of the qq̄ as part of the qq̄g-final
state is color suppressed by powers of Nc. The reason for
having a non-suppressed contribution from the qq̄-pair is
hidden in the requirement to include a contribution where
the interaction with the qq̄ takes place before a gluon is
emitted. This contribution is not color suppressed. The
result eq. (3.4) has been derived from Feynman diagrams
which automatically take into account all necessary con-
figurations.

Taking the square of the amplitude in impact param-
eter space one finds

M̃ilM̃il = (2π)2 |ΨT (r1)|2 r2
1

r2
2 (r2 − r1)2

× [σ(r2) + σ(r2 − r1) − σ(r1)]
2

. (3.6)

The expression r2
1

r2
2 (r2−r1)2

is characteristic for the dipole
formalism [19]. It is possible to derive the full expression
(3.6) within this framework [24].

Assuming strong ordering in the separation of the
quark-antiquark-pair and the separation of the quarks and
the gluon, |r1| � |r2|, one obtains the simple factorized
form

M̃ilM̃il = (2π)2 r2
1 |ΨT (r1)|2 4

σ2(r2)
r4
2

. (3.7)

4 A few special kinematic regions

In this section we consider a few kinematical regions of
interest for which analytic expressions can be obtained.
We will average over azimuthal angles. As a result, we
need to consider only (2.12) and (2.14). Equation (2.15)
would require a discussion similar to (2.14).

First we study the ‘hard‘ region:

Q2
0 � l2 � k2

2 ∼ D(k1) ∼ D(k1 + k2) ∼ k̃2 (4.1)

where Q2
0 denotes a hadronic scale which separates the

hard and the soft region. For simplicity we assume that
all relevant scales in the problem are of the same order of
magnitude, k̃2. In the γ∗ − IP CM-system the gluon jet is
close to the direction of the Pomeron, and the two quarks
form a broader jet in the opposite direction. For Til in
(2.38) we find (after averaging over the azimuthal angle
of l):

Til =
l2

k2
2

(
δim

D(k1 + k2)
− 2

(k1 + k2)i(k1 + k2)m

D2(k1 + k2)

+
δim

D(k1)
− 2

(k1)i(k1)m

D2(k1)

)

×
(

δml − 2
(k2)m(k2)l

k2
2

)
(4.2)

Using (2.24) and (2.25) we obtain for MilM
′
il:

MilM
′
il =

2
(k2

2)2

{(
1

D(k1 + k2)
+

1
D(k1)

)2

−2
(

1
D(k1 + k2)

+
1

D(k1)

)

×
(

(k1 + k2)2

D2(k1 + k2)
+

k2
1

D2(k1)

)

+2
(

(k1 + k2)2

D2(k1 + k2)
+

k2
1

D2(k1)

)2

+4
[k1 · (k1 + k2)]2 − k2

1(k1 + k2)2

D2(k1 + k2)D2(k1)

}

×
[
xIP g(xIP , k̃2)

]2
(4.3)

The transverse cross section is obtained by inserting (4.3)
into (2.12). The most remarkable feature of this result
is the appearance of the square of the gluon structure
function: because of the prefactor 1/(k2

2)
2, one expects

the ‘hard‘ region of large k2
2 to be suppressed. But as a

result of its rise at small xIP , the gluon structure function
provides an enhancement factor of the hard region which
increases with decreasing xIP .

As a special case of the hard region we consider the
case of strong ordering of the transverse momenta, k2

2 �
k2

1. Then (4.3) simplifies into

Til = 2
l2

k2
2

(
δim

D(k1)
− 2

(k1)i(k1)m

D2(k1)

)

×
(

δml − 2
(k2)m(k2)l

k2
2

)
(4.4)

With the approximation of (2.19) we obtain for MilM
′
il:

MilM
′
il = 8

Q4 + m4

(Q2 + m2)4

(
m2

k2
1

)2

× 1
(k2

2)2
[
xIP g(xIP ,k2

2)
]2

. (4.5)

It might be interesting to note that an early approach
[20] to diffractive deep inelastic scattering which not only
considers the radiation of one but many gluons was based
on the special case discussed above. An extension of these
results towards large β can be found in [21] which in our
notation reads

MilM
′
il = 8

Q4 + m4

(Q2 + m2)4

(
m2

k2
1

)2 (
M2 − m2

M2 + Q2

)4

×
(

M2 + 2m2 + 3Q2

M2 + Q2

)2 1
(k2

2)2
[
xIP g(xIP ,k2

2)
]2

.

The main observation here is the strong suppression of
MilM

′
il when m2 becomes of the order of M2. This fact is

also implemented in the parameterization of [3].
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Next we say a few more words about the small-k2
2 re-

gion. As we have noted already after (4.3), the region of
small k2

2 is expected to give an important contribution
to the integrated diffractive cross section. On the other
hand, if k2

2 becomes smaller than, say, the hadronic scale
Q2

0, perturbation theory becomes unreliable and we can-
not apply our formulae. For practical purposes, however, it
would be attractive to find an extrapolation of our jet cross
section into the region where the gluon jet becomes soft.
Following the discussion of the qq̄ final state in diffraction
dissociation in [6] we shall present an extrapolation of our
perturbative calculation, which at small k2

2 leads to the
Ingelman-Schlein picture of the Pomeron structure func-
tion. First, at small k2

2, the approximation l2 � k2
2 will

no longer be valid; l2 can become of the same order as
or even larger than k2

2. For simplicity we do not consider
the most general case but still retain the approximation
l2,k2

2 � k2
1. After integrating over the azimuthal angle of

l we find for Til:

Til = 2
(

δim

D(k1)
− 2

(k1)i(k1)m

D2(k1)

) (
δml − 2

(k2)m(k2)l

k2
2

)

×
(

Θ(l2 − k2
2) +

l2

k2
2
Θ(k2

2 − l2)
)

(4.6)

which is consistent with the result found earlier in [11].
Before inserting (4.6) into (2.29), we have to discuss the
two gluon amplitude F(xIP , l2). As long as the momen-
tum scale l2 at the upper end is large, it can (to a good
approximation) be identified with the unintegrated gluon
structure function (see (2.25)). Now we will try to find
an extrapolation into the soft k2

2 region which, at low k2
2,

smoothly turns into the Pomeron structure function pic-
ture. An easy way has been sketched in [6], and here we
outline the argument in somewhat more detail. We make
the following simple double Mellin transform ansatz for
F :

F(xIP , l2) = φ0
1

Q2
0

∫
dω

2πi

∫
dµ

2πi

(
1

xIP

)ω (
l2

Q2
0

)µ

× 1
ω − χ(µ)

(4.7)

where the integration contours run along the imaginary
axis (−1 < Reµ < 0, χ(µ) < Reω), and φ0 denotes the
overall normalization constant. If we would perform the µ
integral first by picking up a pole at µ = χ−1(ω) = γ(ω),
we obtain the anomalous dimension. However, here it is
more convenient to model the function χ(µ) and to do
first the ω integral. Let us assume that χ(µ) is positive
and becomes large both at µ = −1 and µ = 0 (similar to
the BFKL characteristic function). We then obtain:

F(xIP , l2) = φ0
1

Q2
0

∫
dµ

2πi

× exp
(

χ(µ) log
1

xIP
+ µ log

l2

Q2
0

)
(4.8)

Combining this ansatz with (4.6) we write the l2 integral
as: (

k2
2

Q2
0

)µ ∫ k2
1/k2

2 dl′2

l′2
(
l′2

)µ

× [
Θ(l′2 − 1) + l′2Θ(1 − l′2)

]
(4.9)

Inserting the k2
2-dependent prefactor of (4.9) into the µ

integral of (4.7) and performing a stationary phase anal-
ysis, we find that for Q2

0 � k2
2 the stationary point moves

towards µ = −1, whereas for the opposite case k2
2 � Q2

0
the stationary point is near µ = 0. In order to evaluate
the l′2 integral in (4.8) near µ = −1 or µ = 0 we have
to specify the lower limit of integration. In the first case
(large k2

2, µ → −1), the first term in (4.9) stays constant
whereas the second part gives a log k2

2/Q2
0 from the region

Q2
0/k

2
2 < l′2 < 1. In the second case (small k2

2, µ → 0)
the first term gives a logarithmic enhancement logk2

1/Q2
0

whereas the second term stays constant (which is equal
to 1 if the l′2 integral extends down to 0). As a result we
obtain for the l2 integral:

Φ(k2
1,k

2
2, xIP ) =

∫ k2
1 dl2

l2
F(xIP , l2)

×
(

Θ(l2 − k2
2) +

l2

k2
2
Θ(k2

2 − l2)
)

∼
{

φ0/k2
2 ln

(
k2

2/Q2
0
)
k2

2 � Q2
0 µ ∼ −1

φ0/Q2
0 ln

(
k2

1/k
2
2
)
k2

2 � Q2
0 µ ∼ 0

}
(4.10)

Together with (4.6), we obtain for MilM
′
il:

MilM
′
il = Φ2 8m4

(k2
1)2

Q4 + m4

(Q2 + m2)4
(4.11)

Inserting this into (2.13), and making use of (2.20) we
find the expected result: the transverse cross section be-
longs to leading twist, and the integral over k2

1 diverges
logarithmically.

A nice feature of this extrapolation into the soft non-
perturbative region is the following. As we have described
above, the two cases (large and small k2

2) correspond to
different regions of the l2 integral: the first case is the usual
strong ordering with Q2

0 < l2 < k2
2. In the second case l2

prefers to be larger than k2
2: in this region we simply drop

k2
2 in comparison with l and k1. As a result, the non-planar

diagrams in Fig. 4 become small in comparison with the
planar ones. What is left can be interpreted as a ‘gluon
component of the Pomeron structure function‘. This has
to be compared with the first case, where all diagrams
are equally important, i.e. the Pomeron interacts with the
whole diffractive system.

Next we consider the case where the gluon stays hard
(large k2) and one of the quarks becomes soft, i.e. k1 ∼ 0
or k1 + k2 ∼ 0. Let us assume k1 to be small (k2

1 <
l2 < Q2

0) and go back to (2.38). With l2 > k2
1 only the

third term in the first bracket contributes and we find
after integration over the azimuth angle:

Til =
1
k2

2

(
δil − 2

(k2)i(k2)l

k2
2

)
l2

D(l)
. (4.12)
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Using our ansatz for the unintegrated structure function
(4.7) with the soft extrapolation µ → 0 we can perform
the l-integration

Φ(k1, xIP ) =
∫ Q2

0

k2
1

dl2

l2

(
l2

Q2
0

)µ l2

D(l)

∼ ln
(

D(Q0)
D(k1)

)
(4.13)

and finally arrive at

MilM
′
il = Φ2 2

(k2
2)2

. (4.14)

It is important to note that this kinematical limit yields
a contribution which breaks (collinear) factorization. The
result in (4.14) is similar to the ’super-hard component
of the Pomeron’ introduced in [14]. In a scenario where
the photon virtuality Q2 is smaller than the gluon mo-
mentum k2

2, one would expect from the quark loop a large
logarithm of the form log(k2

2/Q2), if factorization worked.
The potential softness of one of the quarks which controls
the scale l2 in (4.13) is responsible for the lack of such a
hard logarithm. In other words the soft part of the process
decouples from the jets in the final state. With regard to
the inclusive diffractive cross section, the hard gluon jet
combined with a soft quark gives only a rather small frac-
tion of the total contribution. The leading contribution
comes from the scenario discussed earlier where the gluon
becomes soft and the quarks are hard. In this case we
have the familiar strong ordering situation which provides
a hard logarithm log(Q2/k2

2) in accordance with factor-
ization for diffractive deep inelastic scattering [15] and the
notion of a Pomeron structure function. Factorization is
still violated by contributions with k2

2 bigger than the as-
sumed factorization scale. Since the mean value of k2

2 is
close to Q2

0, as can be inferred from (4.10) and (4.11), one
can argue that for any scale well above Q2

0, factorization
should hold.

Finally we return to our ‘hardness condition‘ in (2.2).
For the gluon jet, its transverse momentum square k2

2 co-
incides with the virtuality of the vertical gluon line in
Fig. 4a: for small k2

2 this ‘Pomeron structure function‘ di-
agram becomes more important than the other non-planar
diagrams; the boundary between hard and soft physics is
defined by the off-shellness of the gluon emitted from the
qq̄ pair. Correspondingly, for the quark-antiquark pair it
is the virtuality of the quark (or antiquark) before it emits
the gluon. With the approximations discussed in the be-
ginning of this section, the requirement that the four mo-
mentum square of this quark has to be large then leads to
the last two equations in (2.2).

5 A numerical study

In this section we study the specific signature of the pro-
cess e + p → q + q + g + p′ with the cross section cal-
culated in the previous sections. We work in the γ-IP
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Fig. 6. The distribution of transverse momenta for quarks and
gluons

center of mass system, and the gluon will be restricted
to the forward hemisphere of the proton (Pomeron). We
have implemented the formulae of (2.12)–(2.17) into a full
hadron level Monte Carlo program [22]. To avoid soft
divergences of the matrix element we impose a cut in
|t̂| = |(q − pq)2| > 2 GeV2 and |û| = |(q − pq̄)2| > 2 GeV2,
where q, pq = q + r − k1 − k2, and pq̄ = k1 are the four
momenta of the photon, the upper outgoing quark and
the lower outgoing antiquark (Fig. 5), respectively, and
a cut on the transverse momentum squared of the gluon
k2

2 > 2 GeV2. The coupling αs is kept fixed at αs = 0.25.
For the gluon structure function we use the NLO param-
eterization of GRV [23]. We divide this numerical study
into two parts. In order to analyze the general features
of the three-parton final state we first work in an “ideal“
(i.e. truly asymptotic) kinematic environment where the
invariant mass M is much bigger than all transverse mo-
menta (Q2 = 100 GeV2, M2 = 900 GeV2, (i.e.β = 0.1),
xIP < 10−2). In the second part we turn to HERA kine-
matics.

5.1 Asymptotic region

First we have to define the region of validity of our cal-
culation. In deriving our cross section formulae we have
made several approximations. Regge-kinematics requires
that α2 � α1, 1 − α1. In our numerical analysis we there-
fore impose a kinematical cut and require that α2 < 1

5α1,
1
5 (1 − α1). Second, we expect that for large M2 the mass
of the qq̄ system will be small: in order to enforce this
condition we further demand that m2

qq̄ < 1
4M2.

We begin with pT spectra (Fig. 6). A fit to a power-like
behavior (1/p2

T )p (for p2
T < 10 GeV2) gives p = 0.82 and

p = 1.63 for the quark and gluon transverse momenta, re-
spectively. This behavior is not far from the naive estimate
based upon (4.5): together with the phase space factors in
(2.12)–(2.13) one expects p = 1 for the quark momentum
k2

1, and p slightly less than 2 for the gluon momentum
k2

2. A very striking feature is the fact that for a rather
large fraction of events the ordering condition k2

2 < k2
1,

(k1 + k2)2 is not fulfilled: we find that only 60% of the
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Fig. 7. The distribution of thrust T
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Fig. 8. The distribution of the opening angle ∆ of the qq̄ pair
for values of thrust T > 0.9 (two jet configuration)

events satisfy this condition. This demonstrates that the
simple boson-gluon picture in which the gluon is emitted
with a transverse momentum much smaller than that of
the two quarks may be very unreliable. On the other hand,
for almost all events the square of the gluon transverse
momentum is less than the virtualities of the exchanged
quarks (k2

2 < |̂t|, ˆ|u|).
Next we look into the spatial distribution of the three-

parton final state. From the experimental point of view
it is convenient to begin with the thrust distribution: the
plot in Fig. 7 shows that a large fraction of the events has
a two-jet like structure (T > 0.9). However, there remains
also a sizable fraction (about 20%) of three-jet events for
which T < 0.9. To analyze these samples in more detail,
we begin with the two-jet events and we show in Fig. 8
the distribution of the opening angle ∆ of the qq̄ pair: the
distribution peaks at both small and large opening an-
gles. We divide the events into two sets: events with large
opening angle (∆ > π/2) and those with small opening
angle (∆ < π/2). In the first case we find (Fig. 9) a large
asymmetry in the longitudinal momenta and a big invari-
ant mass of the two quarks. The quark which moves with
maximum momentum (∼ 15 GeV) in the photon direction
forms one jet whereas the second quark moves into the
opposite direction. The second quark and the gluon form
the second jet sharing the jet-momentum. In Fig. 10a the
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Fig. 10. a. The correlation of the longitudinal quark and gluon
momentum for T > 0.9 and ∆ > π/2 (large opening angle).
b. The longitudinal momenta of the quark and antiquark for
T > 0.9 and ∆ < π/2 (small opening angle). Both momenta
are strongly correlated

correlation of the longitudinal quark and gluon momen-
tum for T > 0.9 and ∆ > π/2 (large opening angle) is
shown. The upper band contains events where the quark
moves isolated in the photon direction whereas the anti-
quark moves along with the gluon in the Pomeron direc-
tion. The lower band contains events where the quark and
the gluon form a jet sharing the jet-momentum.

For those events with small opening angle, on the other
hand, the momenta of the two quarks are much more sym-
metric. In this case, the two quarks form a jet opposite to
the gluon (Fig. 9).

In Fig. 10b we show the quark and antiquark longitu-
dinal momentum for T > 0.9 and ∆ < π/2 (small opening
angle). Both momenta are strongly correlated.

In all these cases the jet axis (i.e. the direction of
the gluon or quark) lies mainly in the Pomeron direction
(”aligned gluon configuration”): Fig. 12 (full curve) shows
the k2

2 distributions of the two–jet events. Compared to
the full set of events (Fig. 12 dotted curve) one notices a
slightly steeper decrease.
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Fig. 12. The transverse momenta of the gluon for events with
T > 0.9 (solid line), for T < 0.9 (dashed line) and for all events
(dotted line)

For the three jet events (T < 0.9) the opening angle ∆
ranges between 1.2 and 2.2 (Fig. 13), i.e. we have a star-
like configuration. Again, the gluon prefers to be in the
forward direction (Fig. 12, dashed curve). However, com-
pared to the two-jet events, the fall-off at large k2

2 is less
steep. In other words, events with a large gluon transverse
momentum are more likely to be three-jet like than those
with a small transverse momentum. A few numbers: for
k2

2 < 10 GeV2 the ratio of 3-jet to 2-jet events is about
0.2, whereas for k2

2 > 10 GeV2 this ration changes to 0.47.

5.2 HERA region

After this more general study we now turn to the HERA
region. The results of the previous study should apply as
long as the diffractive mass is sufficiently large: only un-
der these conditions we have a sufficiently large range in
transverse momenta. In HERA kinematics this require-
ment forces us into the (difficult) region of very small β:
for Q2 = 5 GeV2 and M2 = 500 GeV2, we would need
β = 0.01. In a first step we have repeated our analysis
above for this region, and we have found that, indeed, the
previous conclusions on our model still apply. In this re-
gion, however, we expect secondary exchanges to become
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Fig. 13. The difference of the momenta of the two quarks along
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the qq̄ pair for thrust T < 0.9
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Fig. 14. The distribution of transverse momenta for quarks
and gluons

important, and the theoretical interpretation of a jet anal-
ysis becomes more complicated.

A more realistic β-region is β = 0.1. In the HERA re-
gion of not too large Q2 we are then limited in M2. This
restriction, together with the lower cutoffs on the trans-
verse momenta and the virtualities of the partons, lead
to a severe limitation of the phase space for the trans-
verse momenta of the jets. In our numerical analysis we
have chosen Q2 = 5 GeV2 and M2 = 45 GeV2. We do
not impose a cut on m2

qq̄ or α1 and α2. Such a cut would
suppress the cross section by a factor of around 10 ren-
dering the analysis meaningless. Our strategy will be a
comparison with the asymptotic situation. From this we
can deduce how far we can trust our asymptotic formulae
for the HERA kinematics.

We again begin with the kt-spectra (Fig. 14) for the
proposed HERA kinematics, and we fit the power p. For
the quark-spectrum we find p = 1.8 and for the gluon-
spectrum p = 2.3. Both distributions have become steeper
as compared to the asymptotic case which is mainly due
to the stronger restriction in the phase space. The avail-
able energy is approximately a factor 10 smaller now. We
also learn that a measurement of the kt-spectrum can-
not directly be related to the analytic estimates we have
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done in the previous section. In order to test to what
extent the usual assumption of strong ordering between
the transverse momenta of quarks and gluons is satisfied
we compute the fraction of the cross section where k2

2 <
min(|t̂|, |û|): we find that approximately only 2/3 of the
cross section satisfies this constraint, whereas 1/3 lies out-
side this region. Next we have a look at the thrust distri-
bution (Fig. 15). It is much broader than in the asymp-
totic case. Since M2 is no longer that large, the relative
proportion of transverse to longitudinal momenta is much
higher than before, and therefore leads to an increase of
three-jet events (around 60% of the events have a thrust
smaller than 0.9). If we ask for two-jet events, i.e. thrust
T > 0.9, then we find again two configurations (Fig. 16),
one with rather small opening angle between the quarks
and a second with large opening angle. The distribution
of ∆pz versus opening angle ∆ looks similar to the cor-
responding plot for asymptotic energies which makes us
believe that the asymptotic formulae also work properly
for HERA kinematics.

Table 1 shows the integrated qq̄g diffractive jet cross
sections. For comparison, we also present dijet cross sec-
tions from qq̄ production. We have integrated over the
kinematic region 10 GeV2 < Q2, 50 < W < 220 GeV,
xIP < 10−2, where we have integrated over t, assuming
an exponential t dependence. In the first row we present
cross sections for the case where all parton k2

t are larger

Table 1. Integrated cross sections for diffractive qq̄ and qq̄g
production in the kinematic region defined by: 10 GeV2 < Q2,
50 < W < 220 GeV, xIP < 10−2. The t dependence is assumed
to be exponential and the t integral is performed. The kine-
matic cut requires all parton k2

t and in the case of qq̄g also
|t̂|, |û| to be greater than the value specified

kinematic cut dijet qq̄g

2 GeV2 117 pb 66 pb
5 GeV2 55 pb 9.2 pb
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Fig. 17. The cross section as a function of xIP at fixed β = 0.1.
The cross section is integrated over t

than 2 GeV2 in addition to |t̂|, |û| > 2 GeV2, and in the
second row the corresponding cut is 5 GeV2. For compari-
son, in the same kinematic region the inclusive diffractive
cross section (for three flavors) is estimated to be ∼ 2.5
nb, i.e. for the lower kt cut the combined qq̄ and qq̄g jet
rate amounts to approximately 8% of the diffractive cross
section. A look at the kt spectra indicates that the qq̄g
jet rate strongly increases if we lower the cutoffs (entering
a region where our formula requires a modification of the
gluon structure function): this indicates that the largest
part of the qq̄g cross section might come from an inter-
mediate region where, in particular, the gluon kt is larger
than the soft Pomeron scale but lower than the cutoff val-
ues used in our analysis.

As in the case of diffractive production of two jets we
expect the qq̄g jet cross section to rise in 1/xIP ; for the
special case k2

2 � k2
1 such a behavior follows immediately

from (4.5): σ ∼ [
xIP g(xIP , µ2)

]2. In Fig. 17 we show the
cross section as a function of xIP at fixed β. In the region
β = 0.1 (i.e. large diffractive mass) we expect our formula
to be applicable. One can see the steep rise of the cross
section at small xIP , a similar behavior as observed al-
ready in the dijet case. This rise is in qualitative agreement
with the approximation (4.5). As we have indicated in the
introduction, we expect the qq̄g diffractive final state to
dominate in the region of large diffractive masses (small
β). In Fig. 18 we show, for different β bins, the integrated
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cross sections of the two diffractive processes qq̄ and qq̄g
production. One sees that the qq̄g becomes dominant ap-
proximately for β < 0.2. It is interesting to note that this
β-value is consistent with the fit to the diffractive cross
section in [3]: this fit also suggests that the qq̄g contribu-
tion begins to dominate for β ≈ 0.2. In [4], the solution
with a large γ-value is closer to our estimate than the
small-γ solution.

Next we study in more detail the specific properties of
the qq̄g system, in particular the angular distribution of
the three jets. We begin with a scatter plot of the angles of
the quarks, keeping the angle of the gluon fixed. Quarks
angles are defined as angles between quark and photon
directions. In Fig. 19 we show the results for three different
regions of the angle θ2 of the gluon. According to (2.22),
this angle is related to the transverse momentum k2 of the
gluon. At small gluon angle (direction of the gluon close
to the proton (Pomeron) direction, Fig. 19a.), in most
of the events both quark and antiquark are moving not
far from the photon direction (i.e. both their cos θ’s are
close to 1). However, there are also events in which one
of the quarks stays close to the photon direction, whereas
the other one sticks out at a larger angle. At large angle
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(c.) for −0.2 < cos(θgluon) < 0.0, at β = 0.1 and Q2 = 50
GeV2 (M2
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of the gluon (gluon direction orthogonal to the photon-
Pomeron beam axis, Fig. 19c.), on the other hand, the
quarks tend to move in opposite directions, one in the
photon direction and the other in the proton direction.
Correspondingly, at small gluon angle the opening angle
∆ between the quarks prefers to be around π/3 (Fig. 20a.),
whereas for large gluon angle (Fig. 20c.) ∆ peaks at a value
slightly above 2π/3. In all these discussions it should be
made clear, that case (c.) lies at the edge of the region
of validity of our approximation. A reliable calculation of
this kinematic region requires a complete NLO calculation
of diffractive qq̄ and qq̄g production, in particular virtual
corrections to qq̄ production and real gluon emission from
quark lines.

From these considerations we arrive at the following
picture:

– At small transverse momenta of the gluon, we have
mainly two-jet configurations where the quarks travel
in approximately the same direction with an opening
around π/3, carrying similar longitudinal momenta.
But the two quarks can also appear in a more asym-
metric configuration, where one of the quarks has a
much larger longitudinal momentum compared to the
other quark, and moves in approximately the direction
opposite to the gluon. The quark with the smaller lon-
gitudinal momentum then sticks out from the z-axis.

– In the other extreme, where the gluon is emitted per-
pendicular to the z-axis, we observe a ′Mercedes −
star” like configuration, in which both quarks carry
longitudinal momenta of similar value, but in oppo-
site direction, and the cosine of the opening angle lies
between two and three.

– At medium transverse momentum k2 of the gluon, all
configurations discussed above, are possible.

6 Conclusions

In this paper we have presented an analysis of hard diffrac-
tive qq̄g jets with large transverse momenta. Our study is
motivated by the observation that in DIS diffractive disso-
ciation, the Pomeron intercept lies above the value seen in
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purely hadronic interactions: this suggests that the diffrac-
tive final state contains a rather large ‘hard‘ component. A
natural candidate for hard final states are jets. The inves-
tigation of diffractive qq̄g production presents a general-
ization of diffractive dijet production [6]. Our calculation
is restricted to the low-β region (large diffractive masses),
and we have been working in the leading-log 1/β approxi-
mation. At the same time, the transverse momenta of the
outgoing partons are not restricted by a strong ordering
requirement. In the low-β region the emitted gluon carries
a small momentum fraction of the incoming photon, i.e.
in rapidity it is closer to the proton than the two quarks
(Fig. 3).

The analytic expression for the cross section formula in
impact parameter space is remarkably simple. It illustrates
that the concept of a photon wave function holds even be-
yond the approximation, where the transverse momentum
of the emitted gluon is much softer than the quarks. For
special kinematic limits we have obtained even simpler
expression for the cross section formulae.

In a first exploratory numerical study we have calcu-
lated jet cross sections. Depending upon the lower limit of
the transverse momenta, the combined qq̄ and qq̄g jet cross
section can be as large as 8% of the inclusive diffractive
cross section. We have also looked into the spatial distri-
bution of the three-parton final state. If (in the γ∗IP CM-
system) the gluon jet is close to the Pomeron direction,
the quark-antiquark pair mainly forms a single (although
somewhat broader) jet opposite to the gluon jet. In the
extreme case where the emitted gluon is perpendicular to
the photon-Pomeron axis, a clean three-jet configuration
emerges. However, in this region the cross section will be
small. For a diffractive jet analysis, it is important to keep
in mind that quite a large fraction of the qq̄g final states
will appear as a two-jet configuration, and it will be diffi-
cult to separate them from the qq̄ dijet final states.

Experimentally the analysis of two or three jet events
is not easy. A more promising way may be a thrust or ET

analysis. To this end, it would be very desirable to have a
complete NLO calculation of diffractive final states with
two or three jets.
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